PerformanceJVMOptimizationBest Practices
Java Performance Optimization: Best Practices for 2025
January 5, 2025•15 min read•Performance
# Java Performance Optimization: Best Practices for 2025
Performance optimization is crucial for Java applications, especially in enterprise environments where efficiency directly impacts user experience and operational costs.
## JVM Performance Tuning
### Garbage Collection Optimization
Choose the right GC algorithm for your use case:
```bash
# G1GC for low-latency applications
-XX:+UseG1GC -XX:MaxGCPauseMillis=200
# ZGC for ultra-low latency
-XX:+UseZGC
# Parallel GC for throughput
-XX:+UseParallelGC
```
### Memory Management
Optimize heap and non-heap memory:
```bash
# Heap size configuration
-Xms2g -Xmx4g
# Metaspace configuration
-XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=512m
```
## Code-Level Optimizations
### 1. Use Efficient Data Structures
```java
// Use ArrayList for frequent access
List<String> list = new ArrayList<>();
// Use LinkedList for frequent insertions/deletions
List<String> linkedList = new LinkedList<>();
// Use HashMap for key-value lookups
Map<String, Object> map = new HashMap<>();
```
### 2. Optimize String Operations
```java
// Use StringBuilder for multiple concatenations
StringBuilder sb = new StringBuilder();
for (String item : items) {
sb.append(item).append(", ");
}
String result = sb.toString();
```
### 3. Leverage Streams Wisely
```java
// Parallel streams for CPU-intensive operations
List<Integer> result = numbers.parallelStream()
.filter(n -> n > 100)
.map(n -> n * 2)
.collect(Collectors.toList());
```
## Profiling and Monitoring
### 1. JProfiler Integration
```java
// Enable JFR for production monitoring
-XX:+FlightRecorder
-XX:StartFlightRecording=duration=60s,filename=app.jfr
```
### 2. Application Metrics
```java
@Component
public class PerformanceMetrics {
private final MeterRegistry meterRegistry;
@Timed(name = "user.service.time")
public User findUser(Long id) {
return userRepository.findById(id);
}
}
```
Performance optimization is an ongoing process that requires continuous monitoring and tuning based on application behavior and requirements.